A line segment has endpoints at #(5 ,9 )# and #(6 ,7 )#. The line segment is dilated by a factor of #2 # around #(5 ,3 )#. What are the new endpoints and length of the line segment?
1 Answer
Jul 27, 2018
Explanation:
#"let "A=(5,9),B=(6,7)" and "C=(5,3)" then"#
#vec(CA')=2vec(CA)" where A' is the image of A"#
#ula'-ulc=2ula-2ulc#
#ula'=2ula-ulc#
#color(white)(ula')=2((5),(9))-((5),(3))#
#color(white)(ula')=((10),(18))-((5),(3))=((5),(15))#
#rArrA'=(5,15)#
#"Similarly "#
#ulb'=2ulb-ulc#
#color(white)(ulb')=2((6),(7))-((5),(3))#
#color(white)(ulb')=((12),(14))-((5),(3))=((7),(11))#
#rArrB'=(7,11)#
#"calculate the length using the "color(blue)"distance formula"#
#•color(white)(x)d=sqrt((x_2-x_1)^2+(y_2-y_1)^2)#
#"let "(x_1,y_1)=(7,11)" and "(x_2,y_2)=(5,15)#
#d=sqrt((5-7)^2+(15-11)^2#
#color(white)(d)=sqrt(4+16)=sqrt20=2sqrt5#