A line segment is bisected by a line with the equation # 8 y + 5 x = 4 #. If one end of the line segment is at #( 1 , 3 )#, where is the other end?

1 Answer
Oct 13, 2017

Other end coordinates #(-1.809, -1.4944)#

Explanation:

Assumption: It’s a perpendicular bisector that intersects the line segment.
Slope of perpendicular bisector m1;
#y=-(5/8)x+(1/2)#
#m1=-(5/8)#

Slope of line segment #m2=-(1/m1)=-(1/-(5/8))=8/5#
Equation of line segment :
#y-3=(8/5)(x-1)#
#5y-15=8x-8#
#5y-8x=7color(white)(aaaaa)Eqn (1)#
#8y+5x=4color(white)(aaaaa)Eqn (2)#

Solving Eqns (1) & (2) to get the midpoint coordinates,
#25y-40x=35#
#64y+40x=32# color(white)(aaa) Adding both,
#89y=67 or y=67/89=0.7528#
#x=(4-(8*(67/89)))/5=-0.4045#
Midpoint coordinates (-0.4045,0.7528)

#—0.4045=(x1+1)/2#, #0.7528=(y1+3)/2#
#x1=-1.809, color(white)(aaaaa)y1=-1.4944#