A positive real number is 6 less than another. If the sum of the squares of the two numbers is 38, then find the numbers?

1 Answer

Let the positive number be #x# & other number be #x+6# #\quad \forall \ x>0#

As per given condition, we have sum of squares of both numbers equal to 38

#\therefore x^2+(x+6)^2=38#

#x^2+x^2+12x+36=38#

#2x^2+12x-2=0#

#x^2+6x-1=0#

Now, using quadratic formula to find roots of above quadratic formula as follows

#x=\frac{-6\pm\sqrt{6^2-4(1)(-1)}}{2(1)}#

#x=\frac{-6\pm2\sqrt{10}}{2}#

#x=-3\pm\sqrt{10}#

But, #x>0# hence #x=-3+\sqrt{10}#

#x=\sqrt{10}-3\approx 0.16227766016837952#