Two unknowns and two equations thus solvable.
Let 1 box of crayons cost be #c#
Let 1 ream of paper cost be #p#
condition(1): #->1c+5p=54" "# written as #c+5p=54#
condition(2): #->5c+3p=50#
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
From condition(1)
Subtract #5p# from both sides.
#color(red)(c=54-5p)#
Substitute for #color(red)(c)# in condition(2) giving:
#color(green)(5color(red)(c)+3p=50 color(white)("ddd") ->color(white)("ddd")5(color(red)(54-5p))+3p=50)#
#color(green)(color(white)("ddddddddddddd")->color(white)("ddd")270-25pcolor(white)("d")+3p=50)#
#color(green)(color(white)("ddddddddddddd")->color(white)("ddd")270color(white)("ddd")-22pcolor(white)("dd")=50)#
Subtract 270 from both sides
#color(green)(color(white)("ddddddddddddd")->color(white)("dddd")0color(white)("dddd")-22p=-220#
Multiply both sides by (-1)
#color(green)(color(white)("ddddddddddddd")->color(white)("ddddddddddd")22p=220)#
divide both sides by 22
#color(green)(color(white)("ddddddddddddd")->color(white)("ddddddddddddd")p=10)#
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Substitute for #color(red)(p=10)# in condition(1)
#color(green)(c+5color(red)(p)=54color(white)("dddd")->color(white)("dddddd")c+5(color(red)(10))=54)#
#color(green)(color(white)("ddddddddddddd")->color(white)("ddddd.d")c+color(white)("d")50color(white)("d")=54)#
Subtract 50 from both sides
#color(green)(color(white)("ddddddddddddd")->color(white)("ddddddd")c color(white)("d")=4)#