A train travels at #110 3/10# miles per hour. At this rate, how far will the train travel in #2 1/2# hours?

1 Answer
Apr 2, 2016

#1103/4color(white)(i)"miles"color(white)(i)orcolor(white)(i)275.75color(white)(i)"miles"#

Explanation:

Recall that the formula for distance is:

#color(blue)(|bar(ul(color(white)(a/a)d=stcolor(white)(a/a)|)))#

where:
#d=#distance
#s=#speed
#t=#time

#1#. To determine how far the train will travel, start by converting the given mixed fractions into improper fractions.

#color(darkorange)110##color(turquoise)3/color(violet)10color(white)(XXXXXXXXXXX)color(darkorange)2##color(turquoise)1/color(violet)2#

#=(color(violet)10color(darkorange)(xx110)color(white)(i)color(turquoise)(+3))/color(violet)10color(white)(XXXXX)=(color(violet)2color(darkorange)(xx2)color(white)(i)color(turquoise)(+1))/color(violet)2#

#=(1100+3)/10color(white)(AXXXXxxii)=(4+1)/2#

#=1103/10color(white)(XXXXXXXxxx)=5/2#

#2#. Substitute your known values into the distance formula.

#d=st#

#d=(1103/10)(5/2)#

Don't forget about units! Note that #"miles"/"hour"# is read as "miles per hour."

#d=((1103color(white)(i)"miles")/(10color(white)(i)"hour"))((5color(white)(i)"hours")/2)#

#3#. Since #5# (numerator) and #10# (denominator) can be divided by a common factor of #5#, their values can be reduced.

#d=((1103color(white)(i)"miles")/(10color(red)(-:5)color(white)(i)"hour"))((5color(red)(-:5)color(white)(i)"hours")/2)#

#d=((1103color(white)(i)"miles")/(2color(white)(i)"hour"))((1color(white)(i)"hours")/2)#

#4#. Cancel out the unit, hour(s), which appear in the numerator and denominator as a pair.

#d=((1103color(white)(i)"miles")/(2color(white)(i)color(red)cancelcolor(black)("hour")))((1color(white)(i)color(red)cancelcolor(black)("hours"))/2)#

#5#. Solve.

#color(green)(|bar(ul(color(white)(a/a)d=1103/4color(white)(i)"miles"color(white)(i)orcolor(white)(i)275.75color(white)(i)"miles"color(white)(a/a)|)))#