A triangle has angles 80, #(7x -1)# and #(6x -3)# degrees. What is the value of #x#?

2 Answers
Jan 11, 2018

#x=8#

Explanation:

#• " the sum of the 3 angles in a triangle "=180^@#

#"thus the 3 given angles sum to 180"#

#rArr80+7x-1+6x-3=180#

#rArr13x+76=180#

#"subtract 76 from both sides"#

#13xcancel(+76)cancel(-76)=180-76#

#rArr13x=104#

#"divide both sides by 13"#

#(cancel(13) x)/cancel(13)=104/13#

#rArrx=8#

#rArr7x-1=(7xx8)-1=55#

#rArr6x-3=(6xx8)-3=45#

#"the angles are "80^@,55^@" and "45^@#

#color(blue)"As a check"#

#80+55+45=180#

Jan 11, 2018

#x = 8#

Explanation:

Angle sum property of the #DeltaABC# (say),

#/_A +/_B + /_C = 180^@#

#:. 80 + 7x - 1+ 6x - 3 = 180#

#13x + 76 = 180#

#13x = 104#

#x = 104/13#

#x = 8#

.....................