A triangle has corners at (1, 3 ), ( 2, -4), and (8, -5 )#. If the triangle is reflected across the x-axis, what will its new centroid be?

1 Answer
Mar 5, 2018

New centroid color(indigo)(G’(x, y) => ( 11/3, -2)

Explanation:

Reflection rules
![www.onlinemath4all.com%252Freflectionhttp://-transformation.html](https://useruploads.socratic.org/OzYc1fLgQ6q2py6uouD9_477545F2-1E82-498F-8F4B-364B796C96F8.png)

Reflection about the x - axis color(red)(x,y) color(blue)(-> )color(purple)(x, -y)

Three points A, B, C will become A’, B’, C’.

color(red)(A ( 1, 3) ) color(blue)(- >) color(purple)( A’ (1, -3))

color(red)(B ( 2, -4) ) color(blue)(- >) color(purple)( B’ (2, 4))

color(red)(A ( 8, -5) ) color(blue)(- >) color(purple)( C’ (8, 5))

New Centroid is found out using the formula

![https://www.onlinemath4all.com/http://centroidofatriangle.html](https://useruploads.socratic.org/7grCr15vSuGc5atrLu5E_01E71109-8A08-470F-BE88-DE70C7DCB77A.png)

color(green)G’_x = (x_A + x_B + x_C) / 3 = (1 + 2 + 8) / 3 = color(green)(11/3)

color(green)G’_y = (y_A + y_B + y_C) / 3 = (-3 + 4 + 5) / 3 = color(green)(2)

New centroid color(indigo)(G’(x, y) => ( 11/3, -2)