A triangle has corners at #(2 ,4 )#, #(7 ,6 )#, and #(4 ,9 )#. How far is the triangle's centroid from the origin?

1 Answer
Jun 27, 2016

#= 7.67#

Explanation:

Centroid Formula is

#C = ((x_1+x_2+x_3)/3, (y_1+y_2+y_3)/3)# where

#x_1#, #x_2#, #x_3# are the #x#-coordinates of the vertices of the triangle.
#y_1#, #y_2#, #y_3# are the #y#-coordinate’s of the vertices of the triangle.

In our triangle,

#(x_1, y_1) = (2,4)#

#(x_2,y_2) = (7,6)#

#(x_3,y_3) = (4,9)#

The centroid coordinates are

#C = ((2+7+4)/3, (4+6+9)/3) => (13/3, 19/3)#

Distance from origin #(0,0)# to #C(13/3, 19/3)# using the distance formula is

#D = sqrt((13/3)^2+(19/3)^2)#

#D = sqrt((4.33)^2+(6.33)^2)#

#=sqrt (18.78 + 40.11)#

#= sqrt 58.89#

#= 7.67#