A triangle has corners at #(3 , 3 )#, #(4 ,2 )#, and #(8 ,9 )#. What is the radius of the triangle's inscribed circle?

1 Answer

#r=0.6363265774#

Explanation:

there is a formula for solving the radius r of the inscribed circle

#r = sqrt(((s-a)(s-b)(s-c))/s)" "#

where #s=#half the perimeter of the triangle

and #s=1/2*(a+b+c)#

Let #A(3, 3), B(4, 2), C(8, 9)#

so that
#a=#distance from B to C
#b=#distance from A to C
#c=#distance from A to B

#a=sqrt((x_B-x_C)^2+(y_B-y_C)^2)#
#a=sqrt((4-8)^2+(2-9)^2)#
#a=sqrt(16+49)#
#a=sqrt(65)#

#b=sqrt((x_A-x_C)^2+(y_A-y_C)^2)#
#b=sqrt((3-8)^2+(3-9)^2)#
#b=sqrt(25+36)#
#b=sqrt(61)#

#c=sqrt((3-4)^2+(3-2)^2)#
#c=sqrt(1+1)#
#c=sqrt(2)#

Compute #s#

#s=1/2*(a+b+c)#
#s=1/2*(sqrt(65)+sqrt(61)+sqrt(2))#

Compute r

#r = sqrt(((1/2*(sqrt(65)+sqrt(61)+sqrt(2))-sqrt(65))(1/2*(sqrt(65)+sqrt(61)+sqrt(2))-sqrt(61))(1/2*(sqrt(65)+sqrt(61)+sqrt(2))-sqrt(2)))/(1/2*(sqrt(65)+sqrt(61)+sqrt(2))))" "#

#r=sqrt(((0.581102745)(0.8331108174)(7.229146931))/8.643360493)#

#r=0.6363265774#

God bless.....I hope the explanation is useful.