A triangle has corners at #(3, 5 )#, ( 6, 2)#, and #( 4, 3)#. If the triangle is reflected across the x-axis, what will its new centroid be?

1 Answer
Apr 22, 2018

#(13/3,-10/3)#

Explanation:

#"given the coordinates of the vertices of a triangle"#

#(x_1,y_1),(x_2,y_2),(x_3,y_3)#

#"then the coordinates of the centroid are"#

#•color(white)(x)[1/3(x_1+x_2+x_3),1/3(y_1+y_2+y_3)]#

#"here "(x_1,y_1)=(3,5),(x_2,y_2)=(6,2),(x_3,y_3)=(4,3)#

#"hence coordinates of centroid are"#

#[1/3(3+6+4),1/3(5+2+3)]=(13/3,10/3)#

#"under a reflection in the x-axis"#

#• " a point "(x,y)to(x,-y)#

#rArr(13/3,10/3)to(13/3,-10/3)larrcolor(red)"new centroid"#