A triangle has corners at #(6 , 1 )#, ( 4, 2 )#, and #( 2, 8 )#. What are the endpoints and lengths of the triangle's perpendicular bisectors?

1 Answer
Jan 22, 2016

Endpoints at [#(5,1.5),(16/3,7.5)#], [#(3,5),(3.6,5.2)#] and [#(4,4.5),(3.3,4.1)#], lengths measuring #(5sqrt(13))/3,sqrt(10)/5# and #sqrt(65)/10#

Explanation:

Repeating the points
#A(6,1), B(4,2), C(2,8)#

Midpoints
# M_(AB) (5,1.5)#, #M_(BC) (3,5)#, #M_(CA) (4,4.5) #

Slopes of segments (#k=(Delta y)/(Delta x)#, #p=-1/k#)
#AB -> k_1=(2-1)/(4-6)=1/(-2)=-1/2 -> p_1=2#
#BC -> k_2=(8-2)/(2-4)=6/(-2)=-3 -> p_2=1/3#
#CA -> k_3=(1-8)/(6-2)=-7/4 -> p_3=4/7#

Which of the two other sides does the perpendicular line to a side and bisecting it meet? The LONG side. Then we need to know the lengths of the sides of the triangle.
#AB=sqrt((4-6)^2+(2-1)^2)=sqrt (4+1)=sqrt(5)~=2.2#
#BC=sqrt((2-4)^2+(8-2)^2)=sqrt(4+36)=sqrt(40)=2sqrt(10)~=6.3#
#CA=sqrt((6-2)^2+(1-8)^2)=sqrt(16+49)=sqrt(65)~=8.1#
=> #CA>BC>AB#

So
line [1] perpendicular to AB meets side CA [c]
line [2] perpendicular to BC meets side CA [c]
line [3] perpendicular to AC meets side BC [b]

We need the equations of the lines in which the sides BC and CA lay and the equations of the 3 perpendicular lines

Equation of the line that supports side:
#BC -> (y-2)=-3(x-4)# => #y=-3x+12+2# => #y=-3x+14# [a]
#CA-> (y-1)=-(7/4)(x-6)#=>#y=(-7x+42)/4+1#=>#y=(-7x+46)/4#[c]

Equation of the line (passing through midpoint) perpendicular to side:
#AB -> (y-1.5)=2(x-5)# => #y=2x-10+1.5# => #y=2x-8.5# [1]
#BC ->y-5=1/3(x-3)# => #y=(x-3)/3+5# => #y=(x+12)/3# [2]
#CA -> (y-4.5)=(4/7)(x-4)# => #y=(4x-16)/7+4.5# => #y=(4x+15.5)/7# [3]

Finding the interceptions on sides BC and CA

Combining equations [1] and [c]

#{y=2x-8.5#
#{y=(-7x+46)/4# => #2x-8.5=(-7x+46)/4# => #8x+34=-7x+46# => #15x=80# => #x=16/3#
#-> y=2*16/3-17/2=(96-51)/6=45/6# => #y=15/2#

We've found #R(16/3,7.5)#
The distance between #M_(AB)# and R is
#d1=sqrt((16/3-5)^2+(15/2-3/2)^2)=sqrt((1/3)^2+6^2)=sqrt(1+324)/3=sqrt(325)/3=(5*sqrt(13))/3~=6.009#

Combining equations [2] and [c]

#{y=(x+12)/3#
#{y=(-7x+46)/4# => #(x+12)/3=(-7x+46)/4# => #4x+48=-21x+138# => #25x=90# => #x=18/5#
#-> y=(18/5+12)/3=(18+60)/15# => #y=26/5#

We've found # S(3.6,5.2)#
The distance between #M_(BC)# and #S# is:
#d2=sqrt((18/5-3)^2+(26/5-5)^2)=sqrt(3^2+1^2)/5=sqrt(10)/5~=.632#

Combining the equations [3] and [a]

#{y=(4x+15.5)/7#
#{y=-3x+14# => #(4x+15.5)/7=-3x+14# => #4x+15.5=-21+98# => #25=82,5# => #x=3.3#
#-> y=-3*3.3+14# => #y=4.1#

We've found #T(3.3,4.1)#
The distance between #M_(CA)# and T is
#d3=sqrt((3.3-4)^2+(4.1-4.5)^2)=sqrt(.7^2+.4^2)=sqrt(.49+.16)=sqrt(.65)=sqrt(65)/10~=.806#