A triangle has two corners of angles #pi /12# and #(7pi)/8 #. What are the complement and supplement of the third corner?

2 Answers
Feb 20, 2018

#(11pi)/24" and "(23pi)/24#

Explanation:

#"the third angle of the triangle is"#

#pi-(pi/12+(7pi)/8)=pi-(23pi)/24=pi/24#

#• " complementary angles sum to "pi/2#

#"complement of "pi/24=pi/2-pi/24=(12pi)/24-pi/24=(11pi)/24#

#• " supplementary angles sum to "pi#

#"supplement of "pi/24=pi-pi/24=(23pi)/24#

Feb 20, 2018

Complementary angle is #(11pi)/24#

Supplementary angle is #(23pi)/24#

Explanation:

All angles sum to #pi#

Third angle is:

#pi-(pi/12+(7pi)/8)#

#pi-(23pi)/24=pi/24#

An angle and its complement add up to #pi/2 #

#(pi)/24+theta=pi/2=>theta=(11pi)/24#

An angle and its supplement add up to #pi#

#pi/24+theta=pi=>theta=pi-pi/24=(23pi)/24#

#:.#

Complementary angle is #(11pi)/24#

Supplementary angle is #(23pi)/24#