A triangle has two corners of angles #(pi )/4# and #(5 pi)/12 #. What are the complement and supplement of the third corner?
1 Answer
May 14, 2016
Explanation:
The sum of the 3 angles of a triangle
#=pi# hence 3rd angle
#=pi-(pi/4+(5pi)/12)# and
#pi/4=pi/4xx3/3=(3pi)/12" equivalent fractions "#
#rArr"3rd angle "=pi-((3pi)/12+(5pi)/12)=pi-(8pi)/12# and
#(8pi)/12" simplifies to" (2pi)/3#
#rArr"3rd angle"=pi-(2pi)/3=(3pi)/3-(2pi)/3=pi/3#
#"-------------------------------------------------------------"# 2 angles are
#color(blue)" complementary""when they add up to"pi/2#
#rArr"complement of"pi/3=pi/2-pi/3=(3pi)/6-(2pi)/6=pi/6# 2 angles are
#color(red)"supplementary""when they add up to "pi#
#rArr"supplement of"pi/3=pi-pi/3=(3pi)/3-pi/3=(2pi)/3#