A triangle has two corners of angles #(pi )/4# and #(5 pi)/12 #. What are the complement and supplement of the third corner?

1 Answer
May 14, 2016

#pi/6" and " (2pi)/3#

Explanation:

The sum of the 3 angles of a triangle#=pi#

hence 3rd angle#=pi-(pi/4+(5pi)/12)#

and#pi/4=pi/4xx3/3=(3pi)/12" equivalent fractions "#

#rArr"3rd angle "=pi-((3pi)/12+(5pi)/12)=pi-(8pi)/12#

and#(8pi)/12" simplifies to" (2pi)/3#

#rArr"3rd angle"=pi-(2pi)/3=(3pi)/3-(2pi)/3=pi/3#
#"-------------------------------------------------------------"#

2 angles are#color(blue)" complementary""when they add up to"pi/2#

#rArr"complement of"pi/3=pi/2-pi/3=(3pi)/6-(2pi)/6=pi/6#

2 angles are#color(red)"supplementary""when they add up to "pi#

#rArr"supplement of"pi/3=pi-pi/3=(3pi)/3-pi/3=(2pi)/3#