Given that in #\Delta ABC#, #A=\pi/12#, #B={7\pi}/8#
#C=\pi-A-B#
#=\pi-\pi/12-{7\pi}/8#
#={\pi}/24#
from sine in #\Delta ABC#, we have
#\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}#
#\frac{a}{\sin(\pi/12)}=\frac{b}{\sin ({7\pi}/8)}=\frac{c}{\sin ({\pi}/24)}=k\ \text{let}#
#a=k\sin(\pi/12)=0.259k#
# b=k\sin({7\pi}/8)=0.383k#
#c=k\sin({\pi}/24)=0.1305k#
#s=\frac{a+b+c}{2}#
#=\frac{0.259k+0.383k+0.1305k}{2}=0.38625k#
Area of #\Delta ABC# from Hero's formula
#\Delta=\sqrt{s(s-a)(s-b)(s-c)}#
#8=\sqrt{0.38625k(0.38625k-0.259k)(0.38625k-0.383k)(0.38625k-0.1305k)}#
#8=0.006392k^2#
#k^2=1251.634#
Now, the in-radius (#r#) of #\Delta ABC#
#r=\frac{\Delta}{s}#
#r=\frac{8}{0.38625k}#
Hence, the area of inscribed circle of #\Delta ABC#
#=\pi r^2#
#=\pi (8/{0.38625k})^2#
#=\frac{64\pi}{0.1492k^2}#
#=\frac{1347.699}{1251.634}\quad (\because k^2=1251.634)#
#=1.0767\ \text{unit}^2#