A triangle has vertices A, B, and C. Vertex A has an angle of #pi/2 #, vertex B has an angle of #( pi)/4 #, and the triangle's area is #28 #. What is the area of the triangle's incircle?

1 Answer
Jul 5, 2017

The area of the incircle is #=15.1u^2#

Explanation:

enter image source here

The area of the triangle is #A=28#

The angle #hatA=1/2pi#

The angle #hatB=1/4pi#

The angle #hatC=pi-(1/2pi+1/4pi)=1/4pi#

The sine rule is

#a/(sin hat (A))=b/sin hat (B)=c/sin hat (C)=k#

So,

#a=ksin hatA#

#b=ksin hatB#

#c=ksin hatC#

Let the height of the triangle be #=h# from the vertex #A# to the opposite side #BC#

The area of the triangle is

#A=1/2a*h#

But,

#h=csin hatB#

So,

#A=1/2ksin hatA*csin hatB=1/2ksin hatA*ksin hatC*sin hatB#

#A=1/2k^2*sinA*sinB*sinC#

#k^2=(2A)/(sinA*sinB*sinC)#

#k=sqrt((2A)/(sinA*sinB*sinC))#

#=sqrt(56/(sin(1/2pi)*sin(1/4pi)*sin(1/4pi)))#

#=10.58#

Therefore,

#a=10.58sin(1/2pi)=10.58#

#b=10.58sin(1/4pi)=7.48#

#c=10.58sin(1/4pi)=7.48#

The radius of the incircle is #=r#

#1/2*r*(a+b+c)=A#

#r=(2A)/(a+b+c)#

#=56/(25.55)=2.19#

The area of the incircle is

#area=pi*r^2=pi*2.19^2=15.1u^2#