A triangle has vertices A, B, and C. Vertex A has an angle of #pi/2 #, vertex B has an angle of #( pi)/4 #, and the triangle's area is #3 #. What is the area of the triangle's incircle?

1 Answer
Jul 6, 2017

The area of the incircle is #=1.62u^2#

Explanation:

enter image source here

The area of the triangle is #A=3#

The angle #hatA=1/2pi#

The angle #hatB=1/4pi#

The angle #hatC=pi-(1/2pi+1/4pi)=1/4pi#

The sine rule is

#a/(sin hat (A))=b/sin hat (B)=c/sin hat (C)=k#

So,

#a=ksin hatA#

#b=ksin hatB#

#c=ksin hatC#

Let the height of the triangle be #=h# from the vertex #A# to the opposite side #BC#

The area of the triangle is

#A=1/2a*h#

But,

#h=csin hatB#

So,

#A=1/2ksin hatA*csin hatB=1/2ksin hatA*ksin hatC*sin hatB#

#A=1/2k^2*sin hatA*sin hatB*sin hatC#

#k^2=(2A)/(sin hatA*sin hatB*sin hatC)#

#k=sqrt((2A)/(sin hatA*sin hatB*sin hatC))#

#=sqrt(6/(sin(1/2pi)*sin(1/4pi)*sin(1/4pi)))#

#=3.46#

Therefore,

#a=3.46sin(1/2pi)=3.46#

#b=3.46sin(1/4pi)=2.45#

#c=3.46sin(1/4pi)=2.45#

The radius of the incircle is #=r#

#1/2*r*(a+b+c)=A#

#r=(2A)/(a+b+c)#

#=6/(8.36)=0.72#

The area of the incircle is

#area=pi*r^2=pi*0.72^2=1.62u^2#