A triangle has vertices A, B, and C. Vertex A has an angle of #pi/2 #, vertex B has an angle of #( pi)/3 #, and the triangle's area is #21 #. What is the area of the triangle's incircle?

2 Answers
Feb 17, 2018

The area of the triangle's incircle is #10.2# sq.unit.

Explanation:

#/_A = pi/2= 180/2=90^0 , /_B = pi/3=180/3= 60^0 , /_C= 180-(90+60)=30^0 ; Delta_a=21#

This is a right triangle of #(30,60,90) #

In right triangle #(30,60,90) #, Base is #c=x# , Hypotenuse is

#a=2x# and Perpendicular is #b=sqrt3*x#

Area of the triangle ,# A_t= 1/2*c*b=21 or 21= 1/2*x*sqrt3*x#

#:.x^2=42/sqrt3 or x =sqrt(14*sqrt3) ~~ 24.25 :. c ~~ 4.924 #

#b= sqrt3*x ~~ 8.53 ; a=2x~~ 9.85#

Semi perimeter is #S/2=(4.924+8.53+9.85)/2 ~~ 11.65#

Incircle radius is #r_i= A_t/(S/2) = 21/11.65~~1.8#

Incircle Area = #A_i= pi* r_i^2= pi*1.8^2 ~~10.2# sq.unit

The area of the triangle's incircle is #10.2# sq.unit

Feb 19, 2018

see a step process below;

Explanation:

Given;

#A = pi/2, B = pi/3, C = ?#

#A + B + C = pi#

#pi/2 + pi/3 + C = pi#

#C = pi - pi/2 - pi/3#

#C = (6pi - 3pi - 2pi)/6#

#C = pi/6#

Area # = 21#

Getting the length..

#A rArr 21/(1/2 xx sin (pi/2)) ~~ 48.50#

#B rArr 21/(1/2 xx sin (pi/3)) ~~ 42#

#C rArr 21/(1/2 xx sin (pi/6)) ~~ 84#

#(ABC)^2 = 84 xx 42 xx 48.50#

#(ABC)^2 = 171108#

#ABC = sqrt171108#

#ABC = 413.65#

#A rArr 413.65/48.50 ~~ 8.53#

#B rArr 413.65/42 ~~ 9.85#

#C rArr 413.65/84 ~~ 4.12#

Getting semi-perimeter..

#(8.53 + 9.85 + 4.12)/2 = 23.3/2 = 11.65#

Getting the radius..

#r = 21/11.65 = 1.80#

Recall;

#A = pir^2#

#A = 3.142(1.80)^2#

#A = 3.142 xx 3.24#

#A = 10.18 ~~ 10.2"sq units"#