An isosceles triangle has sides A, B, and C with sides B and C being equal in length. If side A goes from #(4 ,1 )# to #(8 ,5 )# and the triangle's area is #64 #, what are the possible coordinates of the triangle's third corner?

1 Answer

#(22, -13)# or #(-10, 19)#

Explanation:

Given in isosceles #\triangle ABC#, the side #A# opposite to the vertex #A# goes through the vertices #B(4, 1)# & #C(8, 5)#.

#BC=\sqrt{(4-8)^2+(1-5)^2}#

#=4\sqrt2#

Mid-point say #M# of side #BC:\ \ \ M(\frac{4+8}{2}, \frac{1+5}{2})\equiv(6, 3)#

Let #h# be the length of altitude drawn from vertex #A# to the side #BC# then area of #\triangle ABC#

#1/2(BC)h=64#

#1/2(4\sqrt2)h=64#

#h=16\sqrt2#

Let the third vertex be #A(x, y)# then the altitude #AM# drawn from vertex #A(x, y)# to the midpoint #M(6, 3)# of side #BC# will be perpendicular to the side #BC# hence the condition of perpendicularity of two lines

#\frac{y-3}{x-6}\times \frac{5-1}{8-4}=-1#

#y=-x+9\ \ ...........(1)#

Now, the distance between the vertex #A(x, y)# & mid-points #M(6, 3)# of side BC must be equal to the length of altitude #h=16\sqrt2# drawn from vertex A to the side BC. Now, using distance formula

#\sqrt{(x-6)^2+(y-3)^2}=16\sqrt2#

#(x-6)^2+(y-3)^2=512#

#(x-6)^2+(-x+9-3)^2=512\ \quad (\because y=-x+9\ \text{from (1)})#

#(x-6)^2=256#

#x-6=\pm16#

#x=6\pm 16#

#x=22, -10#

setting these values of #x# into (1), we get corresponding values of #y# as follows

#y=-22+9=-13 # &

#y=-(-10)+9=19 #

Hence the coordinates of third vertex are #A(22, -13)# or #A(-10, 19)#