Start with the 1/2 equations:
Dithionate(III) ions are reducing:
#sf(stackrel(color(red)(+3))S_2O_4^(2-)+2H_2Orarr2Hstackrel(color(red)(+4))SO_3^(-)+2H^(+)+2e" "color(red)((1)))#
The net oxidation no. change is #sf(+6rarr+8)# so 2 electrons are given out.
These are taken in by the copper(II):
#sf(Cu^(2+)+erarrCu^(+)" "color(red)((2)))#
To get the electrons to balance we X #sf(color(red)((2))# by 2 and add to #sf(color(red)((1))rArr)#
#sf(S_2O_4^(2-)+2H_2O+2Cu^(2+)+cancel(2e)rarr2HSO_3^(-)+2H^(+)+cancel(2e))#
#:.# 1 mole #sf(S_2O_4^(2-)-=)# 2 moles #sf(Cu^(2+))#
#sf(c=n/v)#
#:.##sf(n=cxxv)#
#:.##sf(n_(S_2O_4^(2-))=0.1084xx15.93/1000=0.0017268)#
#:.##sf(n_(Cu^(2+))=0.0017268xx2=0.0034536)#
#sf(m=nxxA_r)#
#:.##sf(m_(Cu)=0.0034536xx63.546=0.219464color(white)(x)g)#
This is the mass of Cu(II) in 25.00 ml.
#:.# 1 ml contains #sf(0.219464/(25.00)color(white)(x)g)#
#:.# 200 ml contains #sf(0.219464/(25.00)xx200.0=1.7557color(white)(x)g)#
#:.# the % of Cu(II) in the sample = #sf(1.7557/(3.1373)xx100=55.96)#