An unknown Cu solution was prepared by dissolving 3.1373 g of the sample in a 200.0 mL flask. A 25.00 mL aliquot of this solution was titrated with 0.1084 M Na2S2O4, the titration required 15.93 mL to reach the end point. Calculate the % Cu in the sample?

1 Answer
Write your answer here...
Start with a one sentence answer
Then teach the underlying concepts
Don't copy without citing sources
preview
?

Answer

Write a one sentence answer...

Answer:

Explanation

Explain in detail...

Explanation:

I want someone to double check my answer

Describe your changes (optional) 200

1
Michael Share
Feb 12, 2018

Answer:

55.96 %

Explanation:

Start with the 1/2 equations:

Dithionate(III) ions are reducing:

#sf(stackrel(color(red)(+3))S_2O_4^(2-)+2H_2Orarr2Hstackrel(color(red)(+4))SO_3^(-)+2H^(+)+2e" "color(red)((1)))#

The net oxidation no. change is #sf(+6rarr+8)# so 2 electrons are given out.

These are taken in by the copper(II):

#sf(Cu^(2+)+erarrCu^(+)" "color(red)((2)))#

To get the electrons to balance we X #sf(color(red)((2))# by 2 and add to #sf(color(red)((1))rArr)#

#sf(S_2O_4^(2-)+2H_2O+2Cu^(2+)+cancel(2e)rarr2HSO_3^(-)+2H^(+)+cancel(2e))#

#:.# 1 mole #sf(S_2O_4^(2-)-=)# 2 moles #sf(Cu^(2+))#

#sf(c=n/v)#

#:.##sf(n=cxxv)#

#:.##sf(n_(S_2O_4^(2-))=0.1084xx15.93/1000=0.0017268)#

#:.##sf(n_(Cu^(2+))=0.0017268xx2=0.0034536)#

#sf(m=nxxA_r)#

#:.##sf(m_(Cu)=0.0034536xx63.546=0.219464color(white)(x)g)#

This is the mass of Cu(II) in 25.00 ml.

#:.# 1 ml contains #sf(0.219464/(25.00)color(white)(x)g)#

#:.# 200 ml contains #sf(0.219464/(25.00)xx200.0=1.7557color(white)(x)g)#

#:.# the % of Cu(II) in the sample = #sf(1.7557/(3.1373)xx100=55.96)#

Was this helpful? Let the contributor know!
1500
Impact of this question
42 views around the world
You can reuse this answer
Creative Commons License