Are the given infinite geometric series below has a sum? If they do, how to find it? (1) 100 + 110 + 121 + ..... (2) 100 + 10 + 1 + ..... (3) 0.3 + 0.6 + 1.2 + .....
1 Answer
Jul 5, 2018
Only sum (2) converges, and the value is
Explanation:
An infinite series can converge to a finite value if and only if the terms tend to zero. Otherwise, we are adding terms that get bigger and bigger (or, in the best hypothesis, terms that remain constant), and the sum will grow indefinitely.
So, since the terms in sums (1) and (3) grow bigger and bigger, both sums will diverge to
Sum (2), on the other hand, has terms that get smaller and smaller: we have
and any goemetric series
converges to
So, in this case,