Check whether the function #f(x,y)={(6xy)/sqrt(x^2+y^2) " if " (x,y)≠(0,0), {0 if (x,y)=(0,0)# is continuous at the origin?

1 Answer
Feb 17, 2018

See below.

Explanation:

If #abs(f(x_1)-f(x_2)) le k abs(x_1-x_2)# for all #x_2# then #f(x)# is said continuous at #x_1#

Now

#abs(f(0,0)-f(x,y)) le abs(0-(6xy)/sqrt(x^2+y^2)) le 6 abs(0-x)#

or

#abs((6xy)/sqrt(x^2+y^2)) le 6 abs x# and also

#abs((6xy)/sqrt(x^2+y^2)) le 6 abs y#

and then

#sqrt2abs((6xy)/sqrt(x^2+y^2))le 6 sqrt(x^2+y^2)#

hence

#f(x,y)# is continuous at #(0,0)#