Check whether the function f(x,y)={(6xy)/sqrt(x^2+y^2) " if " (x,y)≠(0,0), {0 if (x,y)=(0,0) is continuous at the origin?

1 Answer
Feb 17, 2018

See below.

Explanation:

If abs(f(x_1)-f(x_2)) le k abs(x_1-x_2) for all x_2 then f(x) is said continuous at x_1

Now

abs(f(0,0)-f(x,y)) le abs(0-(6xy)/sqrt(x^2+y^2)) le 6 abs(0-x)

or

abs((6xy)/sqrt(x^2+y^2)) le 6 abs x and also

abs((6xy)/sqrt(x^2+y^2)) le 6 abs y

and then

sqrt2abs((6xy)/sqrt(x^2+y^2))le 6 sqrt(x^2+y^2)

hence

f(x,y) is continuous at (0,0)