Check whether the rectangle of maximum area which can be inscribed in a circle is a square?

1 Answer
May 25, 2017

Consider a circle of radius #r# centred on the origin, #O#

enter image source here

Let #ABCD# be a rectangle inscribed in the circle then:

# OA=OB=OC=OD=r#

Let #x=CD#, and. #y=BC# where #x,y gt 0 #

Let us denote the area of the rectangle #ABCD# by #A#, then

# A = xy # ..... [A]

Also, the #triangle BCD# is right angled, so by Pythagoras:

# BD^2 = BC^2 + CD^2 #
# :. (2r)^2 = y^2 + x^2 #
# :. x^2 + y^2 = 4r^2 #
# :. y = sqrt(4r^2 -x^2)# .... [B]

Substitution into [A] gives:

# A = xsqrt(4r^2 -x^2) #

We want to maximise #A# wrt #x# so we examine values of #x# where:

#(dA)/dx = 0#

Differentiating wrt #x# we get;

# (dA)/dx = (x)(d/dx sqrt(4r^2 -x^2)) + (d/dx x)(sqrt(4r^2 -x^2)) #
# " " = x(1/2 1/sqrt(4r^2 -x^2) * (-2x)) + sqrt(4r^2 -x^2) #
# " " = (4r^2 -x^2-x^2)/(sqrt(4r^2 -x^2)) #
# " " = (4r^2 -2x^2)/(sqrt(4r^2 -x^2)) #

At a maximum or minimum we have

# (dA)/dx = 0 #
# :. (4r^2 -2x^2)/(sqrt(4r^2 -x^2)) = 0 #
# :. 4r^2 -2x^2 = 0 #
# :. x^2 = 2r^2 #
# :. x = sqrt(2)r #

Using [B] this gives:

# y = sqrt(4r^2 -2r^2)#
# \ \ = sqrt(2r^2)#
# \ \ = sqrt(2)r#

Thus we require #x=y#, ie a square

NB: We should validate that this value of #x# corresponds to a maximum using the second derivative test, but I will leave that fro the reader.