Circle A has a center at #(1 ,1 )# and a radius of #1 #. Circle B has a center at #(2 ,-3 )# and a radius of #5 #. Do the circles overlap? If not, what is the smallest distance between them?

1 Answer
Mar 2, 2016

points of intersection: #((27+4sqrt(19))/34,(62+sqrt(19))/34) and ((27-4sqrt(19))/34,(62-sqrt(19))/34)# or approximately #(1.307,1.952)# and #(0.281,1.695)#.

Explanation:

Recall that the general equation of a circle is:

#(x-h)^2+(y-k)^2=r^2#

where:
#x=#any x-coordinate of the circle
#h=#x-coordinate of the circle's center
#y=#any y-coordinate of the circle
#k=#y-coordinate of the circle's center
#r=#radius

#1#. Determine the equation of each circle:

Circle A
#(x-1)^2+(y-1)^2=1^2#

Circle B
#(x-2)^2+(y+3)^2=5^2#

#2#. Simplify the equations so that they both equal #0#.

Circle A
#(x-1)^2+(y-1)^2=1^2#

#(x-1)(x-1)+(y-1)(y-1)=1#

#(x^2-2x+1)+(y^2-2y+1)=1#

Equation #1#: #color(orange)(x^2+y^2-2x-2y+1=0)#

Circle B
#(x-2)^2+(y+3)^2=5^2#

#(x-2)(x-2)+(y+3)(y+3)=25#

#(x^2-4x+4)+(y^2+6y+9)=25#

Equation #2#: #color(blue)(x^2+y^2-4x+6y-12=0)#

#3#. Since the equations both equal #0#, they must both be equal to each other.

#color(orange)(x^2+y^2-2x-2y+1)=color(blue)(x^2+y^2-4x+6y-12)#

#4#. Simplify.

#color(red)cancelcolor(orange)(x^2)color(red)cancelcolor(orange)(+y^2)color(orange)(-2x-2y+1)=color(red)cancelcolor(blue)(x^2)color(red)cancelcolor(blue)(+y^2)color(blue)(-4x+6y-12)#

#color(orange)(-2x-2y+1)=color(blue)(-4x+6y-12)#

#5#. Solve for #y#.

#color(orange)(-2y)# #color(blue)(-6y)=color(blue)(-4x)# #color(orange)(+2x)# #color(blue)(-12)# #color(orange)(-1)#

#-8y=-2x-13#

#(-8y)/(-8)=(-2x)/(-8)-13/(-8)#

#color(purple)(y=1/4x+13/8)#

#6#. Substitute #color(purple)(y=1/4x+13/8)# into either equation #1# or #2#. In this case, we'll use equation #1#.

#color(orange)(x^2+color(purple)y^2-2x-2color(purple)y+1=0)#

#x^2+color(purple)((1/4x+13/8))^2-2x-2color(purple)((1/4x+13/8))+1=0#

#7#. Simplify.

#x^2+color(purple)((1/4x+13/8)(1/4x+13/8))-2x-2color(purple)((1/4x+13/8))+1=0#

#x^2+(1/16x^2+13/16x+169/64)-2x-color(red)cancelcolor(black)2^1color(purple)((1/color(red)cancelcolor(purple)4^2x+13/color(red)cancelcolor(purple)8^4))+1=0#

#17/16x^2+13/16x+169/64-2x-1/2x-13/4+1=0#

#17/16x^2-27/16x+25/64=0#

#8#. Use the quadratic formula to factor the equation. This will tell you the x-coordinates of where the two circles intersect.

#color(turquoise)(a=17/16)color(white)(XXX)color(gold)(b=-27/16)color(white)(XXX)color(brown)(c=25/64)#

#x=(-b+-sqrt(b^2-4ac))/(2a)#

#x=(-(color(gold)(-27/16))+-sqrt((color(gold)(-27/16))^2-4(color(turquoise)(17/16))(color(brown)(25/64))))/(2(color(turquoise)(17/16)))#

#x=(27/16+-sqrt(729/256-425/256))/(17/8)#

#x=(27/16+-sqrt(304/256))/(17/8)#

#x=(27/16+-sqrt(19)/4)/(17/8)#

#x=(27/16+-(4sqrt(19))/16)xx8/17#

#x=((27+-4sqrt(19))/color(red)cancelcolor(black)16^2)xxcolor(red)cancelcolor(black)8^1/17#

#color(green)(|bar(ul(color(white)(a/a)x=(27+-4sqrt(19))/34color(white)(a/a)|)))#

#9#. Now that you have the x-coordinates of the points of intersection, substitute each x-coordinate into #color(purple)(y=1/4x+13/8)# to find the corresponding y-coordinates.

Intersection 1
#color(purple)(y=1/4x+13/8)#

#y=1/4((27+4sqrt(19))/34)+13/8#

#y=(27+4sqrt(19))/136+13/8#

#y=(27+4sqrt(19))/136+(17(13))/136#

#y=(27+4sqrt(19))/136+221/136#

#y=(248+4sqrt(19))/136#

#y=(4(62+sqrt(19)))/(4(34))#

#y=(color(red)cancelcolor(black)4(62+sqrt(19)))/(color(red)cancelcolor(black)4(34))#

#color(green)(|bar(ul(color(white)(a/a)y=(62+sqrt(19))/34color(white)(a/a)|)))#

Intersection 2
#color(purple)(y=1/4x+13/8)#

#y=1/4((27-4sqrt(19))/34)+13/8#

#y=(27-4sqrt(19))/136+13/8#

#y=(27-4sqrt(19))/136+(17(13))/136#

#y=(27-4sqrt(19))/136+221/136#

#y=(248-4sqrt(19))/136#

#y=(4(62-sqrt(19)))/(4(34))#

#y=(color(red)cancelcolor(black)4(62-sqrt(19)))/(color(red)cancelcolor(black)4(34))#

#color(green)(|bar(ul(color(white)(a/a)y=(62-sqrt(19))/34color(white)(a/a)|)))#

If you graphed the two circles, it would look like:

https://www.desmos.com/calculator/wkxyfdzz1o

Zoomed in, you can get a sense as to where the intersections are:

https://www.desmos.com/calculator/5eueju2ja9

#:.#, the circles overlap at #((27+4sqrt(19))/34,(62+sqrt(19))/34) and ((27-4sqrt(19))/34,(62-sqrt(19))/34)# or at approximately #(1.307,1.952)# and #(0.281,1.695)#.