Circle A has a center at #(5 ,4 )# and an area of #15 pi#. Circle B has a center at #(2 ,1 )# and an area of #90 pi#. Do the circles overlap?

1 Answer
Sep 29, 2017

#"one circle inside other"#

Explanation:

What we have to do here is #color(blue)"compare "# the distance (d) between the centres of the circles to the #color(blue)"sum/difference"# of the radii.

#• " if sum of radii ">d" then circles overlap"#

#• " if sum of radii"< d" then no overlap"#

#• " if difference of radii">d" then circle inside other"#

#• " area of circle "=pir^2larr" r is the radius"#

#color(blue)"Circle A"#

#rArrpir^2=15pirArrr=sqrt15~~3.873#

#color(blue)"Circle B"#

#rArrpir^2=90pirArrr=sqrt90~~ 9.486#

#"to calculate d use the "color(blue)"gradient formula"#

#color(red)(bar(ul(|color(white)(2/2)color(black)(d=sqrt((x_2-x_1)^2+(y_2-y_1)^2))color(white)(2/2)|)))#

#"let "(x_1,y_1)=(2,1)" and "(x_2,y_2)=(5,4)#

#d=sqrt((5-2)^2+(4-1)^2)=sqrt18~~ 4.243#

#"sum of radii "=3.873+9.486=13.359#

#"difference of radii "=9.486-3.873=5.613#

#"since difference of radii">d" then circle inside other"#
graph{((x-5)^2+(y-4)^2-15)((x-2)^2+(y-1)^2-90)=0 [-40, 40, -20, 20]}