Compute #hatP^2# and is #hatP# idempotent?
Let #|psi_n># be the eigenstates of some Hermitian operator, #hatO#
Consider the operator #hatP = 1/2 (|ψ_m><ψ_m| + |ψ_n><ψ_n| )#
Let
Consider the operator
1 Answer
Assuming you really mean
#hatP = 1/2 (| psi_m >><< psi_m | + |psi_n >> << psi_n |)# ,
then since
#hatP^2 = 1/4 (| psi_m >><< psi_m | + |psi_n >> << psi_n |)^2#
#= 1/4 (| psi_m >><< psi_m | + |psi_n >> << psi_n |)(| psi_m >><< psi_m | + |psi_n >> << psi_n |)#
#= 1/4 (|psi_m >> << psi_m | psi_m >> << psi_m| + |psi_m >> << psi_m | psi_n >> << psi_n| + |psi_n >> << psi_n | psi_m >> << psi_m| + |psi_n >> << psi_n | psi_n >> << psi_n |)#
By default, proper eigenstates of Hermitian operators are conventionally such that the
#= 1/4 [# #color(green)(|psi_m >> color(black)(cancel(color(green)(<< psi_m | psi_m >>))^(1)) color(green)(<< psi_m| + color(purple)(|psi_m >> color(black)(cancel(color(purple)(<< psi_m | psi_n >>))^(0)) color(purple)(<< psi_n| + color(orange)(|psi_n >> color(black)(cancel(color(orange)(<< psi_n | psi_m >>))^(0)) color(orange)(<< psi_n| + color(red)(|psi_n >> color(black)(cancel(color(red)(<< psi_n | psi_n >>))^(1)) color(red)(<< psi_n |# #]#
#= 1/4 (| psi_m >><< psi_m | + |psi_n >> << psi_n |)#
#= 1/2hatP ne hatP#
Even if the eigenstates are not normalized, each eigenvector must be orthogonal for distinct eigenvalues. Orthonormal states are the best-case scenario for simplifying this, so no matter how you spin it,