Consider the equation #5/2cos2x-1/2=3sinx#. Put the equation into standard quadratic trigonometric equation form. Use the quadratic equation to factor the equation. What are the solutions to the equation to two decimal places, where #0lexle360^0#?

1 Answer
Apr 14, 2018

#x=23.58^@,156.42^@,270^@#

Explanation:

#"using the "color(blue)"trigonometric identity"#

#•color(white)(x)cos2x=1-2sin^2x#

#rArr5/2(1-2sin^2x)-1/2=3sinx#

#rArr5/2-5sin^2x-1/2=3sinx#

#"rearrange into standard form for a quadratic"#

#rArr-5sin^2x-3sinx+2=0larrcolor(blue)"standard form"#

#"multiply through by "-1#

#rArr5sin^2x+3sinx-2=0#

#"we now have a quadratic in sin which can be factored"#
#"in the same way as a quadratic in x"#

#"the factors of "5xx-2=-10#
#"which sum to + 3 are + 5 and - 2"#

#color(blue)"split the middle term using these factors"#

#rArr5sin^2x+5sinx-2sinx-2=0#

#rArrcolor(red)(5sinx)(sinx+1)color(red)(-2)(sinx+1)=0#

#"take out a "color(blue)"common factor "(sinx+1)#

#rArr(sinx+1)(color(red)(5sinx-2))=0#

#"equate each factor to zero and solve for x"#

#sinx+1=0rArrsinx=-1rArrx=270^@#

#5sinx-2=0rArrsinx=2/5#

#"since "sinx>0" then x in first/second quadrants"#

#rArrx=sin^-1(2/5)=23.58^@larrcolor(blue)"first quadrant"#

#rArrx=(180-23.58)^@=156.42^@larrcolor(blue)"second quadrant"#