Consider the function #f(x) = x^2- 5#. If #g(x) = f(x-7)#, what can be said of #g(x)#?

1 Answer
Jun 1, 2016

#g(x)=x^2-14x+44#

Explanation:

Confusion often arises in this kind of question because of the duplicate use of the place-holder variable #x#.
To avoid this, rewrite the original equation for #f(x)# substituting a different variable #s#
#color(white)("XXX")f(color(blue)(s))=color(blue)(s)^2-5#

Now if #g(x)=f(x-7)#

we can simply replace #color(blue)(s)# in our definition of #f(color(blue)(s))# with #color(red)(""(x-7))#

#color(white)("XXX")g(x)=f(color(red)((""x-7)))=color(red)(""(x-7))^2-5#

#color(white)("XXXXxX")=(x^2-14x+49)-5#

#color(white)("XXXxXX")=x^2-14x+44#