Consider the function #f(x)= 9x-x^3#. Is this function odd, even, or neither?

2 Answers
Mar 9, 2017

odd

Explanation:

odd function#=>f(-x)=-f(x)#

even function#=>f(-x)=f(x)#

#f(x)=9x-x^3#

#f(-x)=9(-x)-(-x)^3#

#f(-x)=-9x- -x^3#

#f(-x)=-9x+x^3#

#f(-x)=-(9x-x^3)=-f(x)#

#:.#odd

Mar 9, 2017

#f(x)" is odd"#

Explanation:

To determine if a function f(x) is odd/even

#• "If "f(x)=f(-x)" then " f(x)" is even"#

Even functions are symmetrical about the y-axis.

#• "If "f(-x)=-f(x)" then "f(x)" is odd"#

Odd functions have half-turn symmetry about the origin.

#color(blue)"Test if even"#

#f(-x)=9(-x)-(-x)^3=-9x+x^3#

#"Since "f(x)≠f(-x)" then "f(x)" is not even"#

#color(blue)"Test if odd"#

#-f(x)=-(9x-x^3)=-9x+x^3#

#"Since "f(-x)=-f(x)" then "f(x)" is odd"#
graph{9x-x^3 [-40, 40, -20, 20]}