For what value of #k# is this system consistent? #3x + 5y + 5z = −2#, #−3x + −1y + 0z = 7# and #−6x + 6y + 10z = k#

Consider the system:
3x + 5y + 5z = −2
−3x + −1y + 0z = 7
−6x + 6y + 10z = k
For what value of
k
is this system consistent?

1 Answer

24

Explanation:

Consider the adjoint matrix #(A|b)# given by

#((3,5,5,|,-2),(-3,-1,0,|,7),(-6,6,10,|,k))#

We perform the row reductions :

  • #R_2 leftarrowR_2+R_1,quad R_3 leftarrowR_3+2R_1# :

#((3,5,5,|,-2),(0,4,5,|,5),(0,16,20,|,k-4))#

  • #R_3 leftarrowR_3-4 R_1# :

#((3,5,5,|,-2),(0,4,5,|,5),(0,0,0,|,k-24))#

So, the last row now reads

#0x+0y+0z = k-24#

which can be consistent only for #k=24#