#cos75^@ cos15^@ + sin75^@ sin15^@# ?
1 Answer
Apr 25, 2018
Explanation:
Consider a equilateral triangle bisected:
From this we see:
#cos 60^@ = "adjacent"/"hypotenuse" = 1/2#
#sin 30^@ = "opposite"/"hypotenuse" = 1/2#
Method 1
Use:
#cos(alpha-beta) = cos(alpha)cos(beta)-sin(alpha)sin(beta)#
So:
#cos 75^@ cos 15^@ + sin 75^@ sin 15^@ = cos(75^@ - 15^@) = cos 60^@ = 1/2#
Method 2
Use:
#cos(theta) = sin(90^@-theta)#
#sin(theta) = cos(90^@-theta)#
#sin(2theta) = 2 sin theta cos theta#
So:
#cos 75^@ cos 15^@+sin 75^@ sin 15^@ = sin 15^@ cos 15^@ + sin 15^@ cos 15^@ = sin 30^@ = 1/2#