Could someone help me evaluate this limit?

#lim _(x->oo)(x+9)/(x-9)#

1 Answer

#1#.

Explanation:

We have,

#lim_(x rarr oo) ((x + 9)/(x - 9))#

Let's Assume that #y = 1/x#. So, #x = 1/y#.

Now, If #x rarr oo# then, #y rarr 0#.

So, We get,

#lim_(y rarr 0) ((1/y + 9)/(1/y - 9)) = lim_(y rarr 0)(((1 + 9y)/y)/((1 - 9y)/y)) = lim_(y rarr 0) ((1 + 9y)/(1 - 9y))#

Now, you can put #y = 0# and find the limit.

So, The Final Limit is #= ((1 + 9 * 0)/(1 - 9* 0)) = 1/1 = 1#

Hope this helps.