Derivative of x/sinx using first principle?

1 Answer
Mar 1, 2018

#f'(x)=csc(x)-xcot(x)csc(x)#

Explanation:

We want differentiate #f(x)=x/sin(x)#, therefore we seek

#f'(x)=lim_(h->0)((x+h)/sin(x+h)-x/sin(x))/h#

For later use remember the two quite fundamental limits

#color(orange)(lim_(x->0)sin(x)/x=1)# and #color(green)(lim_(x->0)(1-cos(x))/x=0)#

and the trigonometric identity

#color(brown)(sin(x+h)=cos(x)sin(h)+cos(h)sin(x))#

Let's rewrite our problem

#f'(x)=lim_(h->0)((x+h)/(sin(x+h))-x/sin(x))/h#

#=lim_(h->0)((x+h)sin(x)-xsin(x+h))/(hsin(x+h)sin(x))#

#=lim_(h->0)(hsin(x))/(hsin(x+h)sin(x))+lim_(h->0)(xsin(x)-xsin(x+h))/(hsin(x+h)sin(x))#

#=L_1+L_2#

Let's rewrite the second limit

#L_2=lim_(h->0)(xsin(x)-xcolor(brown)((cos(x)sin(h)+cos(h)sin(x))))/(hsin(x+h)sin(x))#

#=lim_(h->0)(xsin(x)(1-cos(h))-x(cos(x)sin(h)))/(hsin(x+h)sin(x))#

#=lim_(h->0)(xsin(x)(1-cos(h)))/(hsin(x+h)sin(x))-lim_(h->0)(xcos(x)sin(h))/(hsin(x+h)sin(x))#

#=L_3-L_4#

Such that #f'(x)=L_1+L_3-L_4#

What is left to evaluate these limits

Limit 1

#L_1=lim_(h->0)(hsin(x))/(hsin(x+h)sin(x))=csc(x)#

Limit 3

#L_3=lim_(h->0)(xsin(x)(1-cos(h)))/(hsin(x+h)sin(x))#

#=xcolor(green)(lim_(h->0)(1-cos(h))/(h))lim_(h->0)1/sin(x+h)=0#

Limit 4

#L_4=lim_(h->0)(xcos(x)sin(h))/(hsin(x+h)sin(x))#

#=xcos(x)/sin(x)color(orange)(lim_(h->0)(sin(h))/(h))lim_(h->0)1/sin(x+h)=xcot(x)csc(x)#

Remember #f'(x)=L_1+L_3-L_4# so

#f'(x)=csc(x)-xcot(x)csc(x)#