Derivative #tan(sqrt(x))# using first principle method?

1 Answer
Mar 23, 2018

#f^'(x)=1/(2sqrtx)sec^2sqrtx#
We note that,
#color(red)((1)tan(A-B)=(tanA-tanB)/(1+tanAtanB)#
#color(red)((2)lim_(theta to0)tan theta/(theta)=1#

Explanation:

Here, # f(x)=tansqrtx#
For first principle method, we take
#color(blue)(f^'(x)=lim_(t tox)(f(t)-f(x))/(t-x)#
#:.f^'(x)=lim_(t tox)(tansqrtt-tansqrtx)/(t-x)#

#=lim_(t tox)(color(red)((tansqrtt-tansqrtx)/(1+tansqrtt tansqrtx)))/(t-x)xx(1+tansqrtt tansqrtx)#

#=lim_(t tox)(tan(sqrtt-sqrtx)/(t-x))xxlim_(t tox)(1+tansqrtt tansqrtx)#

#=(1+tansqrtx tansqrtx)lim_(t tox)(tan(sqrtt-sqrtx)/(sqrtt-sqrtx))1/(sqrtt+sqrtx)#

#=(1+tan^2sqrtx)lim_((sqrtt-sqrtx) to 0)(tan(sqrtt-sqrtx)/(sqrtt-sqrtx))1/(sqrtt+sqrtx)#

#=(sec^2sqrtx)(1)(1/(sqrtx+sqrtx))#

#f^'(x)=1/(2sqrtx)sec^2sqrtx#