Determine an equation of the inverse of y=(x-4)^2+5?

1 Answer
Aug 3, 2018

#y=4+-sqrt(x-5)#

Explanation:

An inverse function can be found by swapping the #x# and #y#

ie
#y=(x-4)^2+5# is your original function

Swapping the #x# and #y# around, you'll get

#x=(y-4)^2+5#

Solving

#x=(y-4)^2+5#
#x-5=(y-4)^2#
#+-sqrt(x-5)=y-4#
#y=4+-sqrt(x-5)#