Determine the solutions to the equation #2sinx-cos^2x=sin^2x# for #0lexle2pi# ?

1 Answer
Apr 14, 2018

#x = pi/6# and #x = (5pi)/6#

Explanation:

Given: #2sin(x)-cos^2(x)=sin^2(x), 0lex < 2pi#

Add #cos^2(x)# to both sides:

#2sin(x)= cos^2(x)+sin^2(x), 0lex < 2pi#

Substitute #1 =cos^2(x)+sin^2(x)#:

#2sin(x)= 1, 0lex < 2pi#

Multiply both sides by #1/2#:

#sin(x) = 1/2, 0lex < 2pi#

Use the inverse sine function on both sides:

#x = sin^-1(1/2), 0lex < 2pi#

The values for this are well known:

#x = pi/6# and #x = (5pi)/6#