Differential of #z=3^sin(3x+7y)# ?
1 Answer
Mar 9, 2018
# z_x = (partial z)/(partial x) = ln 3 \ 3^(sin(3x+7y)+1) \ cos(3x+7y) #
# z_y = (partial z)/(partial y) = 7 \ ln 3 \ 3^sin(3x+7y) \ cos(3x+7y) #
Explanation:
We have:
# z = 3^sin(3x+7y) #
Using the result:
# d/dx a^x = lna \ a^x #
Along with the chain rule, we can readily compute the partial derivatives:
# z_x = (partial)/(partial x) 3^sin(3x+7y)#
# \ \ \ = ln 3 \ 3^sin(3x+7y) \ (partial)/(partial x) sin(3x+7y) #
# \ \ \ = ln 3 \ 3^sin(3x+7y) \ cos(3x+7y) \ (partial)/(partial x) (3x+7y)#
# \ \ \ = ln 3 \ 3^sin(3x+7y) \ cos(3x+7y) \ 3#
# \ \ \ = ln 3 \ 3^(sin(3x+7y)+1) \ cos(3x+7y) #
Similarly:
# z_y = (partial)/(partial y) 3^sin(3x+7y)#
# \ \ \ = ln 3 \ 3^sin(3x+7y) \ cos(3x+7y) \ 7#
# \ \ \ = 7 \ ln 3 \ 3^sin(3x+7y) \ cos(3x+7y) #