#y=-sin(sinx)cosx#
#dy/dx=d/dx(-sin(sinx)cosx)#
Using formula #d/dx(u.v)=v d/dx(u)+u d/dx(v)#
#dy/dx=cosxd/dx(-sin(sinx))+(-sin(sinx))d/dx(cosx)#
Using Chain Rule Formula
#d/dx(f(g(x)))=f'(g(x)).d/dx(g(x))#
#dy/dx=cosx(-cos(sinx)d/dx(-sin(sinx))+(-sin(sinx))(-sinx)#
#dy/dx=cosx(-cos(sinx)cosx)+(-sin(sinx))(-sinx)#
#dy/dx=-cos^2xcos(sinx)+sinxsin(sinx)#
#(d^2y)/dx^2=d/dx(dy/dx)#
#(d^2y)/dx^2=d/dx(-cos^2xcos(sinx)+sinxsin(sinx))#
#(d^2y)/dx^2=-cos^2xd/dx(cos(sinx))+cos(sinx)d/dx(-cos^2x)+sin(sinx)d/dx(sinx)+sinxd/dx(sin(sinx))#
#(d^2y)/dx^2=-cos^2x(-sin(sinx)d/dx(sinx))+cos(sinx)(-2cosx(-sinx))+sin(sinx)cosx+sinxcos(sinx)d/dx(sinx)#
#(d^2y)/dx^2=cos^3xsin(sinx)+2sinxcosxcos(sinx)+sin(sinx)cosx+sinxcos(sinx)cosx#
#(d^2y)/dx^2=cos^3xsin(sinx)+3sinxcosxcos(sinx)+sin(sinx)cosx#
#(d^2y)/dx^2=cosx[sin(sinx)(cos^2x+1)+3sinxcos(sinx)]#