Evaluate: #int dx/(sin^2x+sin^2x*cos^2x+cos^2x)# ?
1 Answer
Explanation:
We seek:
# I = int \ 1/(sin^2x+sin^2x*cos^2x+cos^2x) \ dx#
Now, using the identities:
#sin^2A+cos^2A-=1# ,
#sin2A-=2sinAcosA# ,
We can write:
# I = int \ 1/(1+sin^2x*cos^2x) \ dx#
# \ \ = int \ 1/(1+(sinx \ cosx)^2) \ dx#
# \ \ = int \ 1/(1+(1/2sin2x)^2) \ dx#
# \ \ = int \ 1/(1+1/4sin^2(2x)) \ dx#
# \ \ = 4 \ int \ 1/(4+sin^2(2x)) \ dx#
We can initially perform a trivial substitution to simplify the integral, Let:
# u=2x => (du)/dx=2#
So that:
# I = 4 \ int \ 1/(4+sin^2(u)) \ (1/2) \ du#
# \ \ = 2 \ int \ 1/(4+sin^2(u)) \ du#
Now, for this particular style of integral we employ a standard technique to eliminate trigonometry from the problem. We can write all trigonometry terms in terms of the tangent and secant function and utilizing
# v = tanu => (dv)/(du) = sec^2u = 1+tan^2u=1+v^2#
And:
# sinx -= sinx/cosx * cos x = tanx /secx #
# :. sin^2x = tanx^2 /sec^2x = v^2/(1+v^2) #
Therefore:
# I = 2 \ int \ 1/(4+sin^2(u)) \ du#
# \ \ = 2 \ int \ 1/(4+v^2/(1+v^2)) \ (1/(1+v^2)) \ dv #
# \ \ = 2 \ int \ 1/((4(1+v^2)+v^2)/(1+v^2)) \ (1/(1+v^2)) \ dv #
# \ \ = 2 \ int \ 1/(4+4v^2+v^2) \ dv #
# \ \ = 2 \ int \ 1/(4+5v^2) \ dv #
We can now perform a final substitution to put this last integral into a standard form, by using:
# w = (sqrt(5)v)/2 => (dw)/(dv) = (sqrt(5))/2 #
So that:
# I = 2 \ int \ 1/(4+5((2w)/sqrt(5))^2) \ (2/sqrt(5)) \ dw #
# \ \ = 4/sqrt(5) \ int \ 1/(4+5((4w^2)/5)) \ dw #
# \ \ = 4/sqrt(5) sqrt(5)/sqrt(5) \ int \ 1/(4+4w^2) \ dw #
# \ \ = (sqrt(5))/5 \ int \ 1/(1+w^2) \ dw #
Which is a standard integral, so we can directly integrate to get:
# I = (sqrt(5))/5 \ arctan(w) +C#
Then we restore the substitution
# I = (sqrt(5))/5 \ arctan((sqrt(5)v)/2) +C#
Then we restore the substitution
# I = (sqrt(5))/5 \ arctan((sqrt(5)tanu)/2) + C#
Finally, we restore the substitution
# I = (sqrt(5))/5 \ arctan((sqrt(5)tan(2x))/2) + C#