Evaluate the integrals : 3x^2 sqr(x^3+1)dx?
1 Answer
May 27, 2018
Explanation:
We want to solve
I=int3x^2sqrt(x^3+1)dx
Make a substitution
I=intsqrt(u)du=intu^(1/2)du
By the power rule for integration
I=u^(1/2+1)/(1/2+1)+C=u^(3/2)/(3/2)+C=2/3u^(3/2)+C
Substitute back
I=2/3(x^3+1)^(3/2)+C