Evaluate this integral?

#int_0^ln10 (e^(x)sqrt(e^(x)-1))/(e^(x)+8)dx#

1 Answer
Oct 4, 2017

# int_0^ln10 \ ( e^x sqrt( e^x-1 ) ) / ( e^x+8 ) \ dx = 6 - (3pi)/2 #

Explanation:

We seek:

# I = int_0^ln10 \ ( e^x sqrt( e^x-1 ) ) / ( e^x+8 ) \ dx#

Let us attempt a substitution of the form:

# u = sqrt(e^x-1) => u^2 = e^x - 1 #

Differentiating wrt #x#, we have:

# 2u(du)/dx = e^x => 2u (du)/dx sqrt(e^x-1)= e^xsqrt(e^x-1) #
# \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ => 2u^2 (du)/dx = e^xsqrt(e^x-1) #

We must also change the limits if integration:

When # x={ (ln10), (0) :} => u={ (3), (0) :}#

So if we substitute into the integral, we get:

# I = int_0^3 \ ( 2u^2 ) / ( u^2+9 ) \ du #
# \ \ = 2 \ int_0^3 \ ( u^2 ) / ( u^2+9 ) \ du#
# \ \ = 2 \ int_0^3 \ ( u^2+9-9 ) / ( u^2+9 ) \ du#
# \ \ = 2 \ int_0^3 \ 1 -9 / ( u^2+9 ) \ du #
# \ \ = 2 \ int_0^3 \ 1 -9 / ( u^2+3^2 ) \ du #

Which we can readily integrate:

# I = 2 [u - 9/3arctan(u/3)]_0^3 #
# \ \ = 2 { (3-3arctan1) - (0-3arctan0)} #
# \ \ = 2 (3-(3pi)/4) #
# \ \ = 6 - (3pi)/2 #