Expand #(x+y+z)^4#?
1 Answer
Explanation:
Note that:
#(a+b)^4 = a^4+4a^3b+6a^2b^2+4ab^3+b^4#
So we can find the terms of
By symmetry, the remaining terms - involving all three variables - will take the form
So we have:
#(x+y+z)^4 = x^4+y^4+z^4+4x^3y+4xy^3+4y^3z+4yz^3+4z^3x+4zx^3+6x^2y^2+6y^2z^2+6z^2x^2+kx^2yz+kxy^2z+kxyz^2#
Putting
#81 = 3^4#
#color(white)(81) = (1+1+1)^4#
#color(white)(81) = 1+1+1+4+4+4+4+4+4+6+6+6+k+k+k#
#color(white)(81) = 3(1)+6(4)+3(6)+3k#
#color(white)(81) = 45+3k#
So we have:
#3k = 81-45 = 36#
So
#(x+y)^4 = x^4+y^4+z^4+4x^3y+4xy^3+4y^3z+4yz^3+4z^3x+4zx^3+6x^2y^2+6y^2z^2+6z^2x^2+12x^2yz+12xy^2z+12xyz^2#