Expand #(x+y+z)^4#?

1 Answer
Mar 21, 2018

#(x+y)^4 = x^4+y^4+z^4+4x^3y+4xy^3+4y^3z+4yz^3+4z^3x+4zx^3+6x^2y^2+6y^2z^2+6z^2x^2+12x^2yz+12xy^2z+12xyz^2#

Explanation:

Note that:

#(a+b)^4 = a^4+4a^3b+6a^2b^2+4ab^3+b^4#

So we can find the terms of #(x+y+z)^4# that only involve #2# of #x, y, z# by combining the expansions of binomial powers, One way to see that is to think about setting each of #x, y, z# to zero in turn and expanding the remaining binomial.

By symmetry, the remaining terms - involving all three variables - will take the form #kx^2yz+kxy^2z+kxyz^2# for some constant #k#.

So we have:

#(x+y+z)^4 = x^4+y^4+z^4+4x^3y+4xy^3+4y^3z+4yz^3+4z^3x+4zx^3+6x^2y^2+6y^2z^2+6z^2x^2+kx^2yz+kxy^2z+kxyz^2#

Putting #x=y=z=1# we have:

#81 = 3^4#

#color(white)(81) = (1+1+1)^4#

#color(white)(81) = 1+1+1+4+4+4+4+4+4+6+6+6+k+k+k#

#color(white)(81) = 3(1)+6(4)+3(6)+3k#

#color(white)(81) = 45+3k#

So we have:

#3k = 81-45 = 36#

So #k = 12# and:

#(x+y)^4 = x^4+y^4+z^4+4x^3y+4xy^3+4y^3z+4yz^3+4z^3x+4zx^3+6x^2y^2+6y^2z^2+6z^2x^2+12x^2yz+12xy^2z+12xyz^2#