#f(x)=3sin(x) +8cos(x-pi/3)+5# .find its range?

1 Answer
Apr 8, 2018

The range is:

#5-sqrt(73+24sqrt3)<= y <= 5+sqrt(73+24sqrt3), y in RR#

Explanation:

Find the range of:

#f(x)=3sin(x) +8cos(x-pi/3)+5#

I shall find the range of:

#y = 3sin(x) +8cos(x-pi/3)#

and then add 5.

Substitute #cos(x-pi/3) = cos(pi/3)cos(x) + sin(pi/3)sin(x)#

#y = 3sin(x) +8(cos(pi/3)cos(x) + sin(pi/3)sin(x))#

#y = 3sin(x) + 4cos(x)+4sqrt3sin(x)#

#y = (4sqrt3+3)sin(x) + 4cos(x)" [1]"#

Use the identity for the sine of the sum of two angles:

#y = Asin(x+C) = Acos(C)sin(x)+Asin(C)cos(x)" [2]"#

Matching factors of equation [1] with equation [2], we obtain two equations:

#Acos(C) = 4sqrt3+3" [3]"#

#Asin(C) = 4" [4]"#

Divide equation [4] by equation [3]:

#(Asin(C))/(Acos(C)) = 4/(4sqrt3+3)#

#tan(C) = 4/(4sqrt3+3)#

#C = tan^-1(4/(4sqrt3+3))#

We can use equation [4] to find the value of A:

#Asin(tan^-1(4/(4sqrt3+3))) = 4#

Use the identity #sin(tan^-1(4/(4sqrt3+3))) = (4/(4sqrt3+3))/sqrt(1+(4/(4sqrt3+3))^2)#

#A(4/(4sqrt3+3))/sqrt(1+(4/(4sqrt3+3))^2) = 4#

#A1/sqrt((4sqrt3+3)^2+16) = 1#

#A= sqrt((4sqrt3+3)^2+16)#

#A= sqrt(48+24sqrt3+9+16)#

#A = sqrt(73+24sqrt3)#

Therefore, an alternate form for the original function is:

#y = sqrt(73+24sqrt3)sin(x+tan^-1(4/(4sqrt3+3)))+5#

We know that the sine function varies between -1 and 1, therefore, the range of this function is:

#5-sqrt(73+24sqrt3)<= y <= 5+sqrt(73+24sqrt3), y in RR#