F(x)= ax+3 ; #0≤x<1/2# f(x)= #sqrt((2x-1)/(x+15))# ; #1/2≤x≤1# f(x)= #(sqrt(x+3)-2)#/(x-1) ; #x>1# Find the value of a that makes f(x) continuous in #1/2# ?

1 Answer
Sep 13, 2017

#a=color(red)(-6)#

Explanation:

Since #f(x)=sqrt((2x-1)/(x+15))# for #1/2 <= x < 1#

at #x=1/2#
#color(white)("XXX")f(1/2)=sqrt((2 * 1/2 -1)/(1/2+15))=color(magenta)0#

If #f(x)=color(blue)ax+3# for #x < 1/2#

to be continuous
as #x rarr 1/2# then #color(blue)ax+3 rarr color(magenta)0#

that is, as #xrarr 1/2#
#color(white)("XXX")color(blue)a * 1/2 +3 = color(magenta)0#

#color(white)("XXX")color(blue)a+6 =color(magenta)0#

#color(white)("XXX")color(blue)a=color(red)(-6)#