F(x,y)=3(x^2)y+2y^3-3xy Find the relative extrema and saddle points?

1 Answer
Jun 21, 2018

There are only saddle points at #(0,0)# and #(1,0)#.

Explanation:

The function is

#f(x,y)=3x^2y+2y^3-3xy#

The partial derivatives are

#(delf)/(delx)=6xy-3y#

#(delf)/(dely)=3x^2+6y^2-3x#

Let #(delf)/(delx)=0# and #(delf)/(dely)=0#

Then,

#{(6xy-3y=0),(3x^2+6y^2-3x=0):}#

#<=>#, #{(3y(2x-1)=0),(x^2+2y^2-x=0):}#

#<=>#, #{(y=0),(x=1/2 ; 0 ; 1):}#

The points are #(0,0)#, #(1/2, 0)# and #(1,0)#

The second partial derivatives are

#(del^2f)/(delx^2)=6y#

#(del^2f)/(dely^2)=12y#

#(del^2f)/(delxdely)=6x-3#

#(del^2f)/(delydelx)=6x-3#

The Hessian matrix is

#Hf(x,y)=(((del^2f)/(delx^2),(del^2f)/(delxdely)),((del^2f)/(delydelx),(del^2f)/(dely^2)))#

The determinant of the matrix is

#D(x,y)=det(H(x,y))=|(6y,6x-3),(6x-3,12y)|#

#=6y*12y-(6x-3)^2#

#=72y^2-(6x-3)^2#

Therefore,

#D(0,0)=-9#

#D(1/2,0)=0#

#D(1,0)=-9#

For the point #(1/2,0)# the test is inconclusive.

There are saddle points at #(0,0)# and #(1,0)#.