Find a closed form expression for the nth right Riemann sum of this integral. HELP!?

#int_4^13-4x-5dx#

2 Answers
Dec 8, 2017

#-351#

Explanation:

#int_4^13-4x-5dx = -int_4^13(4x+5)dx = -lim_(n->oo)sum_(k=4n)^(k=13n)(4(k/n)+5)1/n = -351#

Dec 8, 2017

Please see below.

Explanation:

Step 1
Calm down. There's no need for shouting and exclaiming.

Step 2 All the rest.

For #int_a^b f(x) dx = int_4^13 (-4x-5) dx#

We want #sum_(i=1)^n f(x_i) Delta x#

Find #Delta x#

#Delta x = (b-a)/n = (13-4)/n = 9/n#

Find the right endpoints of the subintervals (#x_i#). For #i = 1, 2, . . . , n#

#x_1 = a+iDeltax = 4+i9/n = 4+(9i)/n#

Find the value of the function (the height, the #y#-value) at each right endpoint.

#f(x_i) = f(4+(9i)/n) = -4(4+(9i)/n)-5 = -21-(36i)/n#

Find the Riemann sum

#sum_(i=1)^n f(x_i) Delta x = sum_(i=1)^n (-21-(36i)/n)(9/n)#

That looks closed form to me, but your grader may want you to simplify this.

# = sum_(i=1)^n (-189/n-(324i)/n^2)#

# = sum_(i=1)^n (-189/n)- sum_(i=1)^n (324i)/n^2)#

# = -189/n sum_(i=1)^n 1 - 324/n^2 sum_(i=1)^n i#

# = -189/n (n) - 324/n^2 ((n(n+1))/2)#

# = -189 - 162 ((n+1)/n)#