Find all radian solutions on the interval #(-oo, oo)#? #sin(2x) - tanx = 0#

1 Answer
Apr 28, 2018

#x= pi/4+-pi/2n#
#x= pi+-2pin#
#x= 0+-2pin#
n is an element of all integers

Explanation:

#sin2x-tanx=0#

Apply sine double angle identity:
#2sinxcosx-tanx=0#

Factor out the #sinx#:
#sinx(2cosx-secx)=0#

Solve the 1st one:
#sinx=0#

#x=0, pi#

Solve the 2nd one:
#2cosx=secx#

#+-sqrt2=secx#

#1/(+-sqrt2)= 1/secx#

#+-sqrt2/2= cosx#

#x= pi/4, (3pi)/4, (5pi)/4, (7pi)/4#

General solutions:
#x= pi/4+-2pin#
#x= (3pi)/4+-2pin#
#x= (5pi)/4+-2pin#
#x= (7pi)/4+-2pin#
#x= pi+-2pin#
#x= 0+-2pin#

Where n is an element of all integers

NOTE:
#x= pi/4+-2pin#
#x= (3pi)/4+-2pin#
#x= (5pi)/4+-2pin#
#x= (7pi)/4+-2pin#

These four can be rewritten as:
#x= pi/4+-pi/2n#

Check with this graph:
graph{sin(2x)-tanx [-10, 10, -5, 5]}

Let me know if this makes sense, I tried it in another manner but lost solutions in the process of doing so.