Find all roots of x^3-1, show that if w is a complex root of this equation, the other complex root is w^2 and 1+w+w^2=0?

Find all roots of #x^3-1#, show that if w is a complex root of this equation, the other complex root is #w^2# and #1+w+w^2=0#?

1 Answer
Dec 28, 2017

See below.

Explanation:

#x^3-1=(x-1)(x^2+x+1)# ( difference of 2 cubes )

#x^2+x+1=0#

Using quadratic formula:

#x=(-b+-sqrt(b^2-4ac))/(2a)#

#x=(-1+-sqrt((1)^2-4(1)(1)))/(2(1))=>x=(-1+sqrt(-3))/2 #

#x = (-1-sqrt(-3))/2#

All roots:

#x=1 , x= (-1+sqrt(-3))/2, x= (-1-sqrt(-3))/2#

If #w = (-1+sqrt(-3))/2#

#w^2=((-1+sqrt(-3))/2)^2=(-1-sqrt(-3))/2#

#1+w+w^2=0#

#1+(-1+sqrt(-3))/2+((-1+sqrt(-3))/2)^2=0#