Find all the complex solutions of the equation #x^6 + 64 = 0#?

Answer:
#sqrt3 + i, sqrt3-i, -sqrt3 + i, -sqrt3 - i, 2i, -2i#

1 Answer
Apr 24, 2018

The solutions are #S={2i,-2i,-sqrt3+i, -sqrt3-i, sqrt3-i,sqrt3+i}#

Explanation:

We need

#a^3+b^3=(a+b)(a^2-ab+b^2)#

Therefore,

#x^6+64=(x^2)^3+(2^2)^3=(x^2+2^2)(x^4-4x^2+16)#

#{(x^2+4=0),(x^4-4x^2+16=0):}#

#<=>#, #{(x^2=-4),(x^4-4x^2+16=0):}#

#<=>#, #{(x=-2i),(x=2i),(x^2=(4+-(sqrt(16-4*16)))/(2)):}#

#<=>#, #{(x=-2i),(x=2i),(x^2=(4+-(sqrt(-48)))/(2)):}#

#<=>#, #{(x=-2i),(x=2i),(x^2=(2+-(2sqrt3i))):}#

Let #x=a+ib#

Then,

#(a+ib)^2=2+2sqrt3i#

#a^2-b^2+2aib=2+2sqrt3i#

#{(a^2-b^2=2),(2ab=2sqrt3):}#

#{(a^2-b^2=2),(b=sqrt3/a):}#

#a^2-3/a^2=2#

#a^4-2a^2-3=0#

#a^2=(2+-sqrt(4+4*3))/(2)#

#=1+-2#

#a^2={3, -1}#

#a={+-sqrt3, +-i}#

#b={+-, -isqrt3}#

#x={-sqrt3+i, -sqrt3-i}#

Let #x'=a'+ib'#

Then,

#(a'+ib')^2=2-2sqrt3i#

#(a')^2-(b')^2+2(a')(b')i=2-2sqrt3i#

#{((a')^2-(b')^2=2),(2a'b'=-2sqrt3):}#

#{((a')^2-(b')^2=2),(b'=-sqrt3/(a')):}#

#(a')^2-3/(a')^2=2#

#(a')^4-2(a')^2-3=0#

#(a')^2=(2+-sqrt(4+4*3))/(2)#

#=1+-2#

#(a')^2={3, -1}#

#a'={+-sqrt3, +-i}#

#x'={sqrt3-i, sqrt3+i}#

The solutions are #S={2i,-2i,-sqrt3+i, -sqrt3-i, sqrt3-i,sqrt3+i}#