Find cube root of 15 by using iteration method?

2 Answers
Feb 17, 2018

cube root of 15 correct to three decimal places is
#x=2.466#

Explanation:

Let the cube root of 15 be #x#

Then, cubing both sides and interchanging

#x^3=15#
#x^3-15=0#

Let #f(x)=x^3-15#
We need to investigate for the roots of the polynomial
#x^3-15#
Consider any perfect cube close to the number 15

#1^3=1,,,,,,,2^3=8,,,,,,,,,,, 3^3=27#

#15 #lies between #8 and 27#
Hence cube root of #15# lies between #2 and 3#

Let us guess the initial value of the root as #x_0=2#
Let us follow Newton-Raphson's method of iteration

Iteration 1

#f(x_0))=x_0^3-15=2^3-15=-7#

#f'(x_0))=3x_0^2=3xx2^2=12#

#x_1=x_0-f(x_0)/(f'(x_0))=2-(-7/12)=2.583#

Iteration 2

#f(x_1))=x_1^3-15=(2.583)^3-15=2.240#

#f'(x_1))=3x_1^2=3xx2.583^2=20.021#

#x_2=x_1-f(x_1)/(f'(x_1))=2.583-(2.240/20.021)=2.471#

Iteration 3

#f(x_2))=x_2^3-15=(2.471)^3-15=0.096#

#f'(x_2))=3x_2^2=3xx2.471^2=18.324#

#x_3=x_2-f(x_2)/(f'(x_2))=2.471-(0.096/18.324)=2.466#

Iteration 4
#f(x_3))=x_3^3-15=(2.466)^3-15=0.000#

#f'(x_3))=3x_3^2=3xx2.466^2=18.247#

#x_4=x_3-f(x_3)/(f'(x_3))=2.466-(0.000/18.247)=2.466#

Hence, cube root of 15 correct to three decimal places is
#x=2.466#, since #x_3=x_4#

Feb 17, 2018

#root(3)(15) ~~ 151931/61605 ~~ 2.4662121#

Explanation:

We want to solve #x^3-15 = 0#

Let:

#f(x) = x^3-15#

Then:

#f'(x) = 3x^2#

Newton's method tells us that if #a_i# is an approximate zero of #f(x)# then a better approximation is:

#a_(i+1) = a_i-f(a_i)/(f'(a_i))#

#color(white)(a_(i+1)) = a_i-(a_i^3-15)/(3a_i^2)#

#color(white)(a_(i+1)) = (2a_i^3+15)/(3a_i^2)#

If we use rational approximations with #a_i = p_i/q_i# then this becomes:

#p_(i+1)/q_(i+1) = (2(p_i/q_i)^3+15)/(3(p_i/q_i)^2) = (2p_i^3+15q_i^3)/(3p_i^2q_i)#

So we can define:

#{ (p_(i+1) = 2p_i^3+15q_i^3), (q_(i+1) = 3p_i^2 q_i) :}#

For our first approximation note that:

#2^3 = 8 < 15 < 27 = 3^3#

So:

#2 < root(3)(15) < 3#

Let us choose #p_0/q_0 = 5/2#, i.e. #p_0 = 5#, #q_0 = 2#

Then:

#{ (p_1 = 2p_0^3+15q_0^3 = 2(5)^3+15(2)^3 = 250+120 = 370), (q_1 = 3p_0^2q_0 = 3(5)^2(2) = 150) :}#

In fact #p_1# and #q_1# have a common factor #10#, so let's factor that out and in preparation for our next iteration put:

#{ (p_(1a) = 37), (q_(1a) = 15) :}#

Then:

#{ (p_2 = 2p_(1a)^3+15q_(1a)^3 = 2(37)^3+15(15)^3 = 101306+50625 = 151931), (q_2 = 3p_(1a)^2 q_(1a) = 3(37)^2(15) = 61605) :}#

Let's stop there to find:

#root(3)(15) ~~ 151931/61605 ~~ 2.4662121#