Find #int(3x)/(x-4)^4# using substitution u=x-4. How to solve it?

1 Answer
May 3, 2017

# int \ (3x)/(x-4)^4 \ dx = -(3x-4)/(2(x-4)^3)+C #

Explanation:

We want to find:

# I = int \ (3x)/(x-4)^4 \ dx #

We can perform a simple substitution; Let

# u = x-4 => (du)/dx = 1 #, and. #x=u+4#

If we perform the substitution then we get:

# I = int \ (3(u+4))/u^4 \ du #
# \ \ = 3 \ int \ (u+4)/u^4 \ du #
# \ \ = 3 \ int \ 1/u^3+4/u^4 \ du #

So we can now integrate to get:

# I = 3{-1/2 1/u^2-4/3*1/u^3}+C #
# \ \ = 3{(-3u-8)/(6u^3)}+C #
# \ \ = -{(3u+8)/(2u^3)}+C #

And restoring the substitution we get:

# I = -{(3(x-4)+8)/(2(x-4)^3)}+C #
# \ \ = -{(3x-12+8)/(2(x-4)^3)}+C #
# \ \ = -(3x-4)/(2(x-4)^3)+C #